Fusion power always 30 years away, now its more like 50 years away

When it comes to dealing with global issues like climate change or peak fossil fuels, I’d argue we’ll need to focus technology we already have, or what can realistically be developed in the near future. Relying on more fantastical high tech solutions, such as fusion power, LFTR’s, space solar power or biofuels produced by synthetic biology, is risky because we simply cannot predict when these technologies will become available, if ever! There’s no harm in continuing research into them, but life is about priorities and clearly arguing that we should go slow on renewables, in the forlorn hope of something new emerging would be a risky strategy.

Figure 1: DEMO, a key step on the road to fusion powerplants is now likely to be delayed until the 2050’s

And we have yet more evidence now as to why waiting for a technological holy grail to be found is a bad idea. The latest projections from EuroFusion are that ITER won’t complete its construction until the 2030’s and the next step beyond that, DEMO, won’t be up and running until the 2050’s, with 2054 as an implied likely start up date for DEMO. And this assumes no further delays in ITER. However, with the related JET program now likely to implode due to brexit (already I’ve heard stories of key staff leaving this project due to concerns about impending changes to immigration, they worry they won’t be able to bring over family members, etc.) even this schedule might now slip.

For those unfamiliar with the roadmap to fusion power (for some reason the fast track to fusion page on the ITER website seems to have been deleted!), ITER is essentially a proof of concept device that will generate overunity fusion pulses (that is more energy out than in) in the Megawatt range for periods of up to 1,000 seconds. ITER will also function as a sort sandbox for testing out various theories related to fusion power to help with the design of the reactors to follow. A massive step forward from what current technology can achieve, but a long way from a working commercial fusion power plant. This is why ITER will work concurrently with IFMIF facility in Japan, which will test out materials to ensure they can survive the enormous neutron fluxes that a fusion reactor will need to survive.

via Fusion power always 30 years away, now its more like 50 years away | daryanenergyblog

Advertisements