Tag Archives: EU

Tesla Motors Supercharger System Promises Free Power To Charge Electric Cars/Vehicles For Life USA, EU, Canada, Asia

Tesla Motors Supercharger System Promises Free Power To Charge Electric Cars/Vehicles For Life


These electric vehicle solar powered electric car chargers will be put in all auto rest stops. Drive 3 hours, stop for 30 minutes and recharge, and you can drive another 3 hours. Go to the restroom, get a bite to eat, and take a short walk while the car charges.


What is it like to drive a Tesla electric car? 

Tesla Electric Car Beats BMW M5 in Drag Race 0 To 100 MPH; via A Green Road

Four of these are already in use, so this is not some far off fantasy.  A couple of testers already drove 500 miles with this network and had no problems with it. You can drive almost anywhere in the state of California and use these to drive long distances. By the end of the year, a bunch more will be in Nevada and Oregon. Within 2 years, we will cover almost the entire US, and you will be able to travel almost anywhere. In 4 to 5 years, we expect to cover the entire US without exception and the lower part of Canada.


Superchargers will be in Europe or Asia, and drive a Model S Tesla car. We are sizing the system to generate more power than the cars use, and put power back into the grid. It goes to the heart of the problem, because it puts more energy back into the system than the cars use. Working closely with Solar City and do it inexpensively with economies of scale. 
Existing Tesla electric vehicle cars will get their power for free, forever. You will be able to travel around, anywhere, on pure sunlight. You will not be able to get that with gasoline. This will go down as a historic moment. 
Spread the word. You will have freedom with your electric car. You will have more freedom than with any other choice. You can leave your wallet at home if you stay with friends and/or pack food.


Tesla roles out new financing model, no downpayment, no fuel costs (via Supercharger), and guaranteed trade in or sales value.  


Tesla opens new Supercharger locations connecting the Netherlands, Germany, Switzerland, and Austria. Energized routes enable Model S customers to enjoy free, convenient, 100 percent electric trips on the German Autobahn and to destinations in the Alps.


Get ready for a HUGE paradigm shift in how people see and use electric cars and other vehicles. Tesla is leading the way forward. They deserve a huge round of applause for making this charging system happen. Why didn’t the various national governments put in electric charging stations all over and drive the market in this direction? 
Oh yea, they are controlled by the huge carbon and nuclear fuel monopolies that don’t like or want any electric cars, renewable energy or independence happening, which allows customers to get away from their greedy top down control machinations. 


Now imagine the next generation of cars getting charged in the same amount of time that it takes for a gasoline engine car.. using super capacitors and next gen power creating devices that can convert energy from a charger into hydrogen that runs a former gasoline motor, converted to run on the ‘new’ energy source.

Via PlowboyGrownUp December 10, 2014\
 Nano Flow Cell

Some details on the car power system


The carbon fuel and nuclear industries better be shaking in their boots, because things may be going to change pretty fast from here on in. They might not be able to sell gasoline or nuclear energy at any price in the near future. Bottom line, how can they compete with unlimited amounts of ‘free’ solar power and free plug in chargers that generate more power than they consume?

Thanks for your generous and very appreciated support!
A Green Road Project; Teaching the Science of Sustainable Health and Success. Keep asking – what works for 7 future generations without causing harm?


Tesla Motors Supercharger System Promises Free Power To Charge Electric Cars/Vehicles For Life USA, EU, Canada, Asia

More articles like this at;

Environment, Holistic Living, Health, Self-Healing, Zero Point And Renewable Energy

Wave Powered Kinetic Energy Production Technology Global Report; S. America, EU, Australia, UK, China, USA

Wave Powered Kinetic Energy Production Technology Global Report; S. America, EU, Australia, UK, China, USA


BOEM reports that; “Whereas wind resource potential is typically given in gigawatts (GW), wave and tidal resource potential is typically given in terawatt-hours/year (TWh/yr). The Electric Power Research Institute (EPRI) has completed a recent analysis of the U.S. wave energy resource potential, available here. EPRI estimates the total wave energy resource along the outer US continental shelf at 2,640 TWh/yr. That is an enormous potential, considering that just 1 TWh/yr of energy will supply around 93,850 average U.S. homes with power annually. 
While an abundance of wave energy is available, it cannot be fully harnessed everywhere for a variety of reasons, such as other competing uses of the ocean (i.e. shipping, commercial fishing, naval operations) or environmental concerns in sensitive areas. Therefore, it is important to consider how much resource is recoverable in a given region. EPRI estimates that the total recoverable resource along the U.S. shelf edge is 1,170 TWh/yr, which is almost one third of the 4,000 TWh of electricity used in the United States each year.


“Locations with the most potential for wave power include the western seaboard of Europe, the northern coast of the UK, and the Pacific coastlines of North and South America, Southern Africa, Australia, and New Zealand.  The north and south temperate zones have the best sites for capturing wave power. The prevailing westerlies in these zones blow strongest in winter.
The following countries have actual operating wave power plants, or pilot demonstration models.


Brazil installed it’s first wave powered electricity generating station..


Eco Wave Power has successfully installed a medium-scale wave energy generation system, in the Black Sea, during the month of April, 2012. The installation of EWP’s system, took place during that month, in recognition of the international Mother Earth Day, that is celebrated in more than 175 countries every year. They estimate that the world’s ocean waves produce twice the amount of energy produced by the whole world now.

“The Aguçadoura Wave Farm was the world’s first wave farm. It was located 5 km (3 mi) offshore near Póvoa de Varzim, north of Porto, Portugal. The farm was designed to use three Pelamis wave energy converters to convert the motion of the ocean surface waves into electricity, totalling to 2.25 MW in total installed capacity. The farm first generated electricity in July 2008[81] and was officially opened on September 23, 2008, by the Portuguese Minister of Economy.[82][83] 
The wave farm was shut down two months after the official opening in November 2008 as a result of the financial collapse of Babcock & Brown due to the global economic crisis. The machines were off-site at this time due to technical problems, and although resolved have not returned to site and were subsequently scrapped in 2011 as the technology had moved on to the P2 variant as supplied to Eon and Scottish Power Renewables.[84] A second phase of the project planned to increase the installed capacity to21 MW using a further 25 Pelamis machines[85] is in doubt following Babcock’s financial collapse.”


“A CETO wave farm off the coast of Western Australia has been operating to prove commercial viability and, after preliminary environmental approval, is poised for further development.][90][91]
Ocean Power Technologies (OPT Australasia Pty Ltd) is developing a wave farm connected to the grid near Portland, Victoria through a 19 MW wave power station. The project has received an AU $66.46 million grant from the Federal Government of Australia.[92]
Oceanlinx will deploy a commercial scale demonstrator off the coast of South Australia at Port MacDonnell before the end of 2013. This device, the greenWAVE, has a rated electrical capacity of 1MW. This project has been supported by ARENA through the Emerging Renewables Program. The greenWAVE device is a bottom standing gravity structure, that does not require anchoring or seabed preparation and with no moving parts below the surface of the water.[47]


Bungalow Phil February 19, 2015  The First Wave Power Plant Is Officially Operational
Written by KALEIGH ROGERS STAFF WRITER February 19, 2015 // 04:50 PM EST
“The fully submerged buoys are tethered to seabed pump units. These buoys move with the motion of the passing waves and drive the pumps. The pumps pressurize fluid which is then used to drive hydro turbines and generators to produce electricity,” Carnegie Wave Energy Limited, which spent the last ten years developing the technology, explained in a press release.For now, the energy collected into the grid won’t be powering homes across Australia. All of the power generated is being purchased by the Australian Department of Defense to power the country’s largest naval base on Garden Island
m a x l i March 6, 2015  WA wave energy project turned on to power naval base at Garden Island
“The CEO said wave energy provided a very reliable source of energy 24/7.”
This is poison for the ButAtNightTheSunIsNotShiningAndSometimesTheWindIsNotBlowing sayers.


UK energy and power experts meet to discuss the latest developments and initiatives in wave and tidal power technology across Britain.

“Funding for a 3 MW wave farm in Scotland was announced on February 20, 2007, by theScottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding package for marine power in Scotland. The first of 66 machines was launched in May 2010.[86]
A facility known as Wave hub has been constructed off the north coast of Cornwall, England, to facilitate wave energy development. The Wave hub will act as giant extension cable, allowing arrays of wave energy generating devices to be connected to the electricity grid. The Wave hub will initially allow 20 MW of capacity to be connected, with potential expansion to40 MW. Four device manufacturers have so far expressed interest in connecting to the Wave hub.[87][88] 
The scientists have calculated that wave energy gathered at Wave Hub will be enough to power up to 7,500 households. The site has the potential to save greenhouse gas emissions of about 300,000 tons of carbon dioxide in the next 25 years.[89]


Eze Sea Wave Integration Power Generation principles and techniques, the four major of breakthrough:
1.Gravity floats device: it is easy to generate up and down” momentum “do not have the waves to generate electricity;
2.Gan Pole buoy mechanics: to stimulate a huge collection of kinetic energy;
3.Device is simple maintenance: low and stable power generation against the impact of the typhoon; year-round and reliable power generation;
4.Pressure air storage: remaining in the wave energy to the energy stored in the air tank as a standby power.
Source; description under video


A concept model is demonstrated at a university above.

Sustainable Today visits the Wallace Energy Systems and Renewables Facility at Oregon State University. Lab head Annette Von Jouanne takes us on a tour of the facility and demonstrates the Wave Energy Linear Test Bed and the device that OSU and Columbia Power Technologies are developing. Source; description under video
“Reedsport, Oregon – a commercial wave park on the west coast of the United States located 2.5 miles offshore near Reedsport, Oregon. The first phase of this project is for ten PB150 PowerBuoys, or 1.5 megawatts.[93][94] The Reedsport wave farm was scheduled for installation spring 2013.[95] Project has ground to a halt because of legal and technical problems, August, 2013. See:-
Source; http://en.wikipedia.org/wiki/Wave_power


Wikipedia; “Wave power is the transport of energy by ocean surface waves, and the capture of that energy to do useful work – for example, electricity generationwater desalination, or the pumping of water (into reservoirs). Machinery able to exploit wave power is generally known as a wave energy converter (WEC).
Wave power is distinct from the diurnal flux of tidal powerand the steady gyre of ocean currents. Wave-power generation is not currently a widely employed commercial technology, although there have been attempts to use it since at least 1890.[1] In 2008, the first experimental wave farm was opened in Portugal, at the Aguçadoura Wave Park.[2] The major competitor of wave power is offshore wind power.

Physical concepts

When an object bobs up and down on a ripple in a pond, it experiences an elliptical trajectory.

Motion of a particle in an ocean wave.

A = At deep water. The orbital motion of fluid particles decreases rapidly with increasing depth below the surface.
B = At shallow water (ocean floor is now at B). The elliptical movement of a fluid particle flattens with decreasing depth.
1 = Propagation direction.
2 = Wave crest.
3 = Wave trough.
Photograph of the water particle orbits under a – progressive and periodic – surface gravity wave in awave flume. The wave conditions are: mean water depth d = 2.50 ft (0.76 m), wave height H = 0.339 ft (0.103 m), wavelength λ = 6.42 ft (1.96 m), periodT = 1.12 s.[3]
See energy, power and work for more information on these important physical concepts. see wind wave for more information on ocean waves.
Waves are generated by wind passing over the surface of the sea. As long as the waves propagate slower than the wind speed just above the waves, there is an energy transfer from the wind to the waves. Both air pressure differences between the upwind and the lee side of a wave crest, as well as friction on the water surface by the wind, making the water to go into the shear stress causes the growth of the waves.[4]
Wave height is determined by wind speed, the duration of time the wind has been blowing, fetch (the distance over which the wind excites the waves) and by the depth and topography of the seafloor (which can focus or disperse the energy of the waves). A given wind speed has a matching practical limit over which time or distance will not produce larger waves. When this limit has been reached the sea is said to be “fully developed”.
In general, larger waves are more powerful but wave power is also determined by wave speed, wavelength, and water density.
Oscillatory motion is highest at the surface and diminishes exponentially with depth. However, for standing waves (clapotis) near a reflecting coast, wave energy is also present as pressure oscillations at great depth, producing microseisms.[4] These pressure fluctuations at greater depth are too small to be interesting from the point of view of wave power.
The waves propagate on the ocean surface, and the wave energy is also transported horizontally with the group velocity. The mean transport rate of the wave energy through a vertical plane of unit width, parallel to a wave crest, is called the wave energy flux (or wave power, which must not be confused with the actual power generated by a wave power device).

Wave power formula[edit]

In deep water where the water depth is larger than half the wavelength, the waveenergy flux is[a]
   P = \frac{\rho g^2}{64\pi} H_{m0}^2 T_e     \approx \left(0.5 \frac{\text{kW}}{\text{m}^3 \cdot \text{s}} \right) H_{m0}^2\; T_e,
with P the wave energy flux per unit of wave-crest length, Hm0 the significant wave heightTe the wave energy periodρ the water density and g the acceleration by gravity. The above formula states that wave power is proportional to the wave energy period and to the square of the wave height. When the significant wave height is given in metres, and the wave period in seconds, the result is the wave power in kilowatts (kW) per metre of wavefront length.[5][6][7][8]
Example: Consider moderate ocean swells, in deep water, a few km off a coastline, with a wave height of 3 m and a wave energy period of 8 seconds. Using the formula to solve for power, we get
   P \approx 0.5 \frac{\text{kW}}{\text{m}^3 \cdot \text{s}} (3 \cdot \text{m})^2 (8 \cdot \text{s}) \approx 36 \frac{\text{kW}}{\text{m}},
meaning there are 36 kilowatts of power potential per meter of wave crest.
In major storms, the largest waves offshore are about 15 meters high and have a period of about 15 seconds. According to the above formula, such waves carry about 1.7 MW of power across each metre of wavefront.
An effective wave power device captures as much as possible of the wave energy flux. As a result the waves will be of lower height in the region behind the wave power device.

Wave energy and wave-energy flux[edit]

In a sea state, the average energy density per unit area of gravity waves on the water surface is proportional to the wave height squared, according to linear wave theory:[4][9]
where E is the mean wave energy density per unit horizontal area (J/m2), the sum of kinetic andpotential energy density per unit horizontal area. The potential energy density is equal to the kinetic energy,[4] both contributing half to the wave energy density E, as can be expected from the equipartition theorem. In ocean waves, surface tension effects are negligible for wavelengths above a few decimetres.
As the waves propagate, their energy is transported. The energy transport velocity is the group velocity. As a result, the wave energy flux, through a vertical plane of unit width perpendicular to the wave propagation direction, is equal to:[11][4]
P = E\, c_g, \, \
with cg the group velocity (m/s). Due to the dispersion relation for water waves under the action of gravity, the group velocity depends on the wavelength λ, or equivalently, on the wave period T. Further, the dispersion relation is a function of the water depth h. As a result, the group velocity behaves differently in the limits of deep and shallow water, and at intermediate depths:[4][9]

Deep-water characteristics and opportunities

Deep water corresponds with a water depth larger than half the wavelength, which is the common situation in the sea and ocean. In deep water, longer-period waves propagate faster and transport their energy faster. The deep-water group velocity is half the phase velocity. In shallow water, for wavelengths larger than about twenty times the water depth, as found quite often near the coast, the group velocity is equal to the phase velocity.[12]


The first known patent to use energy from ocean waves dates back to 1799 and was filed in Paris by Girard and his son.[13] An early application of wave power was a device constructed around 1910 by Bochaux-Praceique to light and power his house at Royan, near Bordeaux in France.[14]It appears that this was the first oscillating water-column type of wave-energy device.[15] From 1855 to 1973 there were already 340 patents filed in the UK alone.[13]
Modern scientific pursuit of wave energy was pioneered by Yoshio Masuda‘s experiments in the 1940s.[16] He has tested various concepts of wave-energy devices at sea, with several hundred units used to power navigation lights. Among these was the concept of extracting power from the angular motion at the joints of an articulated raft, which was proposed in the 1950s by Masuda.[17]
A renewed interest in wave energy was motivated by the oil crisis in 1973. A number of university researchers re-examined the potential to generate energy from ocean waves, among whom notably were Stephen Salter from the University of EdinburghKjell Budal and Johannes Falnesfrom Norwegian Institute of Technology (now merged into Norwegian University of Science and Technology), Michael E. McCormick from U.S. Naval AcademyDavid Evans from Bristol University, Michael French from University of LancasterNick Newman and C. C. Mei from MIT.
Stephen Salter’s 1974 invention became known as Salter’s duck or nodding duck, although it was officially referred to as the Edinburgh Duck. In small scale controlled tests, the Duck’s curved cam-like body can stop 90% of wave motion and can convert 90% of that to electricity giving 81% efficiency.[18]
In the 1980s, as the oil price went down, wave-energy funding was drastically reduced. Nevertheless, a few first-generation prototypes were tested at sea. More recently, following the issue of climate change, there is again a growing interest worldwide for renewable energy, including wave energy.[19]

Modern technology

Wave power devices are generally categorized by the method used to capture the energy of the waves, by location and by the power take-off system. Method types are point absorber or buoy; surfacing following or attenuator oriented parallel to the direction of wave propagation; terminator, oriented perpendicular to the direction of wave propagation; oscillating water column; and overtopping. Locations are shoreline, nearshore and offshore. Types of power take-off include: hydraulic ramelastomeric hose pump, pump-to-shore, hydroelectric turbine, air turbine,[20] and linear electrical generator. Some of these designs incorporate parabolic reflectorsas a means of increasing the wave energy at the point of capture. These capture systems use the rise and fall motion of waves to capture energy.[21] Once the wave energy is captured at a wave source, power must be carried to the point of use or to a connection to the electrical grid bytransmission power cables.[22] The table contains descriptions of some wave power systems:
Device Proponent Country of origin Capture method Location Power take off Year build Notes
Anaconda Wave Energy Converter Checkmate SeaEnergy.[25] UK Surface-following attenuator Offshore Hydroelectric turbine 2008 In the early stages of development, the device is a 200 metres (660 ft) long rubber tube which is tethered underwater. Passing waves will instigate a wave inside the tube, which will then propagates down its walls, driving a turbine at the far end.[23][24]
AquaBuOY Finavera Wind Energy, later SSE Renewables Limited Ireland-Canada-Scotland Buoy Offshore Hydroelectric turbine 2003 In 2009 Finavera Renewables surrendered its wave energy permits from FERC.[27] In July 2010 Finavera announced that it had entered into a definitive agreement to sell all assets and intellectual property related to the AquaBuOY wave energy technology.[25][26][27][28]
AWS-iii AWS Ocean Energy UK (Scotland) Surface-following attenuator? Offshore Air turbine 2010 The AWS-III is a floating toroidal vessel. It has rubber membranes on the outer faces which deform as waves pass, moving air inside chambers which in turn drive air-turbines to generate electricity. AWS Ocean tested a 1/9 scale model in Loch Ness in 2010, and are now working on a full sized version which will be 60m across and should generate 2.5 MW. It is envisage these will be installed in offshore farms moored in around 100m depth of water.[29][30][31][32]
CETO Wave Power Carnegie Australia Buoy Offshore Pump-to-shore 1999 As of 2008, the device is being tested off Fremantle, Western Australia,[35] the device consists of a single piston pump attached to the sea floor with a float (buoy) tethered to the piston. Waves cause the float to rise and fall, generating pressurized water, which is piped to an onshore facility to drive hydraulic generators or run reverse osmosis water desalination.[33][34]
Cycloidal Wave Energy Converter Atargis Energy Corporation USA Fully Submerged Wave Termination Device Offshore Direct Drive Generator 2006 In the tank testing stage of development, the device is a 20 metres (66 ft) diameter fully submerged rotor with two hydrofoils. Numerical studies have shown greater than 99% wave power termination capabilities.[35] These were confirmed by experiments in a small 2D wave flume[36]as well as a large offshore wave basin.
FlanSea (Flanders Electricity from the Sea) FlanSea Belgium Buoy Offshore Hydroelectric turbine 2010 A point absorber buoy developed for use in the southern North Sea conditions.[31][32][33] It works by means of a cable that due to the bobbing effect of the buoy, generates electricity.[37][38][39]
Islay LIMPET Islay LIMPET Scotland oscillating water column Onshore Air turbine 1991 500 kW shoreline device uses an oscillating water column to drive air in and out of a pressure chamber through a Wells turbine.[40][41][42]
Lysekil Project Uppsala University Sweden Buoy Offshore Linear generator 2002 Direct driven linear generator placed on the seabed, connected to a buoy at the surface via a line. The movements of the buoy will drive the translator in the generator.[43][44]
Oceanlinx Oceanlinx Australia OWC Nearshore & Offshore air turbine 1997 Wave energy is captured with anOscillating Water Column and electricity is generated by air flowing through a turbine. The third medium scale demonstration unit near Port Kembla, NSW, Australia, a medium scale system that was grid connected in early 2010.[45]

In May 2010, the wave energy generator snapped from its mooring lines in extreme seas and sank on Port Kembla’s easternbreakwater.[46]
A full scale commercial nearshore unit,greenWAVE, with a capacity of 1MW will be installed off Port MacDonnell in South Australia before the end of 2013.[47]
OE buoy Ocean Energy Ireland Buoy Offshore Air turbine 2006 In September 2009 completed a 2-year sea trial in one quarter scale form. The OE buoy has only one moving part.[48]
OWEL Ocean Wave Energy Ltd UK Wave Surge Converter Offshore Air turbine 2013 The surging motion of long period waves compresses air in a tapered duct which is then used to drive an air turbine mounted on top of the floating vessel.[49] The design of a full scale demonstration project was completed in Spring 2013, ready for fabrication.[50]
Oyster wave energy converter Aquamarine Power UK (Scots-Irish) Oscillating wave surge converter Nearshore Pump-to-shore (hydro-electric turbine) 2005 A hinged mechanical flap attached to the seabed captures the energy of nearshore waves. It drives hydraulic pistons to deliver high pressure water to an onshore turbine which generates electricity. In November 2009, the first full-scale demonstrator Oyster began producing power on Orkney.[51]
Pelamis Wave Energy Converter Pelamis Wave Power UK (Scottish) Surface-following attenuator Offshore Hydraulic 1998 As waves pass along a series of semi-submerged cylindrical sections linked by hinged joints, the sections move relative to one another. This motion activateshydraulic cylinders which pump high pressure oil through hydraulic motorswhich drive electrical generators.[52] The first working Pelamis machine in 2004 was at the European Marine Energy Center.[53]The later P2, owned by E.ON, started grid connected tests off Orkney in 2010.[54]
PowerBuoy Ocean Power Technologies US Buoy Offshore Hydroelectric turbine 1997 The Pacific Northwest Generating Cooperative is funding construction of a commercial wave-power park atReedsport, Oregon using buoys.[55] The rise and fall of the waves moves a rack and pinion within the buoy and spins a generator.[56] The electricity is transmitted by a submerged transmission line. The buoys are designed to be installed one to five miles (8 km) offshore in water 100 to 200 feet (60 m) deep.[57]

PB150 PowerBuoy with peak-rated power output of 150 kW.

R38/50 kW, R115/150 kW 40South Energy UK Underwater attenuator Offshore Electrical conversion 2010 These machines work by extracting energy from the relative motion between one Upper Member and one Lower Member, following an innovative method which earned the company one UKTI Research & Development Award in 2011.[58] A first generation full scale prototype for this solution was tested offshore in 2010,[59][60][61] and a second generation full scale prototype was tested offshore during 2011.[62] In 2012 the first units were sold to clients in various countries, for delivery within the year.[63][64] The first reduced scale prototypes were tested offshore during 2007, but the company decided to remain in a “stealth mode” until May 2010[65] and is now recognized as one of the technological innovators in the sector.[66] The company initially considered installing at Wave Hub in 2012,[67] but that project is on hold for now. The R38/50 kW is rated at 50 kW while the R115/150 kW is rated at 150 kW.
SDE Sea Waves Power Plant SDE Energy Ltd. Israel Buoy Nearshore Hydroelectric turbine 2010 A breakwater-based wave energy converter, this device is built close to the shore and utilizes the vertical motion of buoys for creating hydraulic pressure which in turn operates the system’s generators. In 2010 it began construction of a new 250 kWh model in the port of Jaffa, Tel Aviv and preparing to construct its standing orders for a 100 MWh power plants in the islands of Zanzibar and Kosrae, Micronesia.
SeaRaser Alvin Smith (Dartmouth Wave Energy)\Ecotricity UK Buoy Nearshore Hydraulic ram 2008 Consisting of a piston pump(s) attached to the sea floor with a float (buoy) tethered to the piston. Waves cause the float to rise and fall, generating pressurized water, which is piped to resoviors onshore which then drive hydraulic generators.[68][69]

It is currently “undergoing extensive modelling ahead of a sea trial” [70]
Squid/ WaveNET AlbaTERN UK (Scotland) Multi-point absorber Nearshore Hydraulic? 2011 A 10 kW Squid prototype was tested atEMEC in 2011.[71] The company have since secured funding through the WATERS2 project, to further develop the device including developing arrays.[72]
Unnamed Ocean Wave-Powered Generator SRI International US Buoy Offshore Electroactive polymerartificial muscle 2004 A type of wave buoys, built using special polymers, is being developed by SRI International.[73][74]
Wavebob Wavebob Ireland Buoy Offshore Direct Drive Power Take off 1999 Wavebob have conducted some ocean trials, as well as extensive tank tests. It is an ocean-going heaving buoy, with a submerged tank which captures additional mass of seawater for added power and tunability, and as a safety feature (Tank “Venting”)
Wavepiston Wavepiston ApS Denmark Oscillating wave surge converter Nearshore Pump-to-shore (hydro-electric turbine) 2013 The idea behind this concept is to reduce the mooring means for wave energy structures. Wavepiston systems use vertical plates to exploit the horizontal movement in ocean waves. By attaching several plates in parallel on a single structure the forces applied on the structure by the plates will tend to neutralize each other. This neutralization reduces the required mooring means. “Force cancellation” is the term used by the inventors of the technology to describe the neutralization of forces. A Wavepiston system will comprise a long (several wavelengths) floating structure, anchored by its ends, such that the predominant wave direction is along the structure.

The simplest and strongest floating structure imaginable is a steel cable fitted with floaters and anchored by slack moorings in both ends. An inherent feature of slack mooring is that the mooring system compensates for variations in water level due to tidal.
Wave Dragon Erik Friis-Madsen Denmark Overtopping device Offshore Hydroelectric turbine 2003 With the Wave Dragon wave energy converter large wing reflectors focus waves up a ramp into an offshore reservoir. The water returns to the ocean by the force of gravity via hydroelectric generators.

Wave Dragon seen from reflector, prototype 1:4½

WaveRoller AW-Energy Oy Finland Oscillating wave surge converter Nearshore Hydraulic 1994 The WaveRoller is a plate anchored on the sea bottom by its lower part. The back and forth movement of surge moves the plate. The kinetic energy transferred to this plate is collected by a piston pump. Full-scale demonstration project built off Portugal in 2009.[75][76]

WaveRoller farm installation in Peniche, Portugal. August 2012

Wave Star Wave Star A/S Denmark Multi-point absorber Offshore Hydroelectric turbine 2000 The Wavestar machine draws energy from wave power with floats that rise and fall with the up and down motion of waves. The floats are attached by arms to a platform that stands on legs secured to the sea floor. The motion of the floats is transferred via hydraulics into the rotation of a generator, producing electricity. Wave Star has been testing a 1:10 machine since 2005 in Nissum Bredning, Denmark, it was taken out of duty in November 2011. A 1:2 Wave Star machine is in place inHanstholm which has produced electricity to the grid since September 2009.[77]

World wave energy resource map


There is a potential impact on the marine environment. Noise pollution, for example, could have negative impact if not monitored, although the noise and visible impact of each design varies greatly.[7] Other biophysical impacts (flora and fauna, sediment regimes and water column structure and flows) of scaling up the technology is being studied.[79] In terms of socio-economic challenges, wave farms can result in the displacement of commercial and recreational fishermen from productive fishing grounds, can change the pattern of beach sand nourishment, and may represent hazards to safe navigation.[80] Waves generate about 2,700 gigawatts of power. Of those 2,700 gigawatts, only about 500 gigawatts can be captured with the current technology.[21]


Wave Powered Kinetic Energy Production Technology Global Report; S. America, EU, Australia, UK, China, USA

Fukushima Radioactive Fallout Detected In Alaska, Tibet, EU, Lithuania And Norway – Toxicity Of Plutonium Proved Via Scientific Animal Studies

Fukushima Radioactive Fallout Detected In Alaska, Tibet, EU, Lithuania And Norway – Toxicity Of Plutonium Proved Via Scientific Animal Studies

Fukushima plume model shows 1 Million Bq/m2 over West Coast after reactor explosions — TV: Private emails reveal highest levels of gov’t worried about health impact in US — Nuclear industry tried to bury truth, while UC Berkeley experts told public “there is no plume” (VIDEO)


Animated maps showing how radiation plumes go around the world after a nuclear disaster, such as Chernobyl or Fukushima.


Video above describes via FOIA documents, that building #3 at Fukushima exploded, that the #3 spent fuel pool melted, dried out and caught on fire, throwing some to most of it’s contents into upper atmosphere and jet stream.  There were two explosions at this building.

SFP#3 reactor and spent fuel pool both had MOX fuel in them, which means that massive amounts of highly toxic, deadly plutonium went into the air. Even if just the reactor OR the spent fuel pool sent most of it’s contents into the air, that would be really bad. But remember, that #3 also had an equipment fuel pool, where they also stored fuel, and this is the one that melted out in building #4, so the odds are that the same thing happened in this building. 


Arnie Gunderson, a nuclear expert, explains how Building #3 experienced a DETONATION involving 100 tons of radioactive elements, not a ‘harmless’ hydrogen explosion. That dirty bomb type of detonation launched the contents of a reactor, and/or a spent fuel pool high up into the air, and that went all around the world. For more details, click on the link below.

What Really Happened At Fukushima Reactor And Spent Fuel Pool #3? via @Green Road


TEPCO makes the claim that Fukushima had almost zero radioactive release. Then they claim that even if plutonium got out, that it did not go around the world, because it is too ‘heavy’. The actual evidence and facts show that the exact opposite happened. 

Plutonium-238 From Fukushima Traveled Around The World – ‘Misleading’ Experts Said It Would Stay Close By, Or Did Not Happen; via @AGreenRoad

The Fukushima radioactive plutonium nano particle plume went around the world. Everyone in the Northern hemisphere breathed some of this in – EVERYONE. Lithuania measured detectable amounts of plutonium in the air… and traced it back to Fukushima, not Chernobyl. The only question is, did our lungs kick out the these nano dust particles, or did some of the adhere and ‘stick’, where they can then do harm, and possibly cause cancer or be absorbed into the body?
Experts: Fukushima ‘globally enhanced’ cesium-137 levels in air by 2 to 3 orders of magnitude — Radioactive plume that reached Europe “contaminated the land, and as a consequence the whole food chain” — Concentrations greatly underestimated


2015 – Fukushima Radiation Found In Alaska Lichen, Caribou, Arctic Snow, Plus Sea Animals Like Salmon, Clams, Seals, Walruses, Polar Bears


93 BILLION Bq/L of Cesium 137 And Strontium 90 Discharged DAILY From Fukushima, Measured In Tokyo Soil Up To 48,000 Bq/kg; via @AGreenRoad

Peak radiation in oceans measured after nuclear events…..

Event                                            Peak Radiation Reading In Bq/m³

2,400 Nuclear weapons testing peak –               100 Bq/m³
Chernobyl caused a peak reading of –            5,000 Bq/m³
Fukushima caused a peak reading of – 180,000,000 Bq/m³

Chernobyl was around ten times worse than 2,400 nuclear bombs going off.

Fukushima was around 180,000 times worse than 2,400 nuclear bombs going off. For more details on where the numbers above come from, go here….

2014 – Fukushima Ocean Radiation Compared To Chernobyl and 2,400 Open Air Nuclear Bomb Tests; via @AGreenRoad

K. Nishihara, et al., “Radionuclide release to Stagnant Water in Fukushima-1 Nuclear Power Plant,” Trans. At. Energy Soc, Japan, Vol 11 (1), pp 13 – 19, 2012 (in Japanese)
Plutonium is 100,000 million times more toxic than uranium. It will take 5 – 15 years for the cancers to show up from this plutonium cancer initiator in a constantly rising fashion, much like the thyroid cancers take 2 – 4  years to start showing up after the Fukushima mega disaster on 3/11. 
See the chart below which illustrates that plutonium hot particles are 115,000 times more hazardous than uranium. (Tamplin and Cochlin 1974)  
See * note by Tamplin and Cochram at bottom of chart above…

The lung cancer in the family of Patrick (from the video) could very well have started from plutonium coming from Fukushima. It takes at least 2 years to get to the point where it is visible, detectable and has a negative effect on health to the point where medical doctors can detect it. In dogs it took three years to show up, but that might be different in human beings. 

Right after the explosion at #3, the plutonium laced, black radioactive smoke cloud went down and over Tokyo, contaminating 40 million people with Iodine, cesium, uranium, plutonium and many other nano ‘hot’ particles. For more details, click on linked article…

How Dangerous Is 400-6000 Pounds Of Plutonium Nano Particle Dust Liberated By Fukushima? Via @AGreenRoad

Plutonium Mimics Iron In Body – 2 Million Times More Dangerous Than Uranium, MOX Planned For Use In All Future Nuclear Power Plants; via @AGreenRoad

2014 – Tokyo, Japan Should Be Evacuated Says Dr Mita MD, Most Of Japan Radiation Contaminated After The Fukushima Mega Nuclear Disaster; via @AGreenRoad

Now that you know the lethality and toxicity of plutonium, why do you think that they are claiming nothing happened at Fukushima, and nothing harmful came out? Wouldn’t you agree that the pro nuclear folks cannot afford to let you know the horrible truth of what happened, so their only choice was to cover it all up?


It is hard to believe, but the picture and scientific reports show that the plutonium from Fukushima traveled over 10,000 miles to Norway, where these hot plutonium and other radioactive nano sized particles were picked up on an air filter. The picture below is an autoradiogram of the hot particles on the paper filter taken in April of 2011. 
Nuclear fuel fragments” from Fukushima found in Europe — 10,000+ kilometers from reactors — Study: Plume “directly from N. America” — Hot particles a “significant part” radioactive releases 


Now that we know that everyone breathed in some amount of plutonium, how dangerous is it? A 100% mortality rate of even the smallest dose of plutonium in animal studies is the norm, but those deaths don’t start happening for a few years, which is the norm for all low dose radiation studies. Very few die right away, but the effect of the radiation builds and increases over the long haul. Scientists and medical researchers know that it can take up to 30 years for a cancer to show up from the initial exposure. It takes so long, and that is why the nuclear industry can get away with these cancers and deaths.  
Toxicity of inhaled plutonium dioxide in beagle dogs. 
Muggenburg BA, Guilmette RA, Mewhinney JA, Gillett NA, Mauderly JL, Griffith WC, Diel JH, Scott BR, Hahn FF, Boecker BB.
Radiat Res. 1996 Mar;145(3):361-81
Source; Inhalation Toxicology Research Institute, Alburquerque, New Mexico 87185, USA.
Lung, liver and bone cancer mortality after plutonium exposure in beagle dogs and nuclear workers. 
Wilson DA, Mohr LC, Frey GD, Lackland D, Hoel DG. 
Health Phys. 2010 Jan;98(1):42-52. doi: 10.1097/HP.0b013e3181b97318. 
Source; Medical University of South Carolina, Department of Biostatistics, Bioinformatics and Epidemiology, 135 Cannon Street, Charleston, SC 29425, USA. 
Lungs are no different than the radiation air filters above. You saw the small black radioactive dust specks on the filter media in NORWAY, correct?

Via jec August 5, 2014 “Just some rough back of envelope thoughts, but..a human breathes about 3,000 gal of air a day, or approx 11/m3 a day. So..if ones just looks at the contamination..and breathing..and not even consider a HOT particle..just how many BQ can we be looking at in an adult human?
Pretty simple, figure the distance traveled via Jet Stream..do the 1/2 half life..and TADA you have 22,000 Bq/m3 West Coast USA on one day in time. So if a person inhales 11 m3 a day..11 m3 X22,000 BQ/m3 = a whopping 242,000 BQ of I-131 it could have been possible to inhale for a person for ONE day. For the I-131 released by Fukushima picked up in Norway, by backward calculations with a 1/2 life of 8 days, the 5500 Bq/m3 in Norway..6000 miles back towards Japan,this was eye opening. Is this healthy? …The calculations of 242,000 BQ a day is for Iodine 131 human lung exposure. Location is on the West Coast USA, 8 days after Fukushima.”
This same simple formula can be used for any radioactive element, once you know how much in bq/m3 is in the air at any given time, including for plutonium. 
Now you know why everyone on the planet breathed in radioactive Iodine, uranium, strontium, plutonium and many other isotopes, because every human being on the planet is a living breathing radiation ‘filter’.  The only question now is, what happens from here? How many of those ‘hot’ iodine, plutonium, uranium, cesium, and 100’s of other types of radioactive particles and gases got breathed in and absorbed?  How many more are being eaten or drunk with food or water today, as these radioactive elements concentrate up the food chain, starting from 3/11 to today? What will be the negative effects on health to all of these human living, breathing radiation filters in the upcoming years as the incubation times run their course?

Since the nuclear industry is not admitting any of this happened, they will refuse to study this. And even if they ‘studied’ it, would you trust whatever result they came up with? Just because the nuclear industry pays for a study, wouldn’t you agree that the study results would more than likely be in their favor, no matter what was really going on?

Fukushima Radioactive Fallout Detected In Alaska, Tibet, EU, Lithuania And Norway – Toxicity Of Plutonium Proved Via Scientific Animal Studies
More articles like this at;

Individual Radioactive Elements/Isotopes, USA Radiation Exposure Prevention and Reversal, Music

Dr. Paolo Scampa Reports That Fukushima Released 3,000 Billion Lethal Doses Of Radiation


“Dr Paolo Scampa, a widely know EU Physicist, single handedly popularized the easily understood Lethal Doses concept. “Lethal Doses”; what does it mean?

Dr. Paolo has estimated that Fukushima in total has released radiation that equals approximately “three thousand billion (3,000,000,000,000) lethal doses of radiation. This is up from about 70 Billion = 70,000,000,000 Billion Lethal Doses” released as of March 23, 2011. Fukushima continues to leak invisible, deadly, cancer and genetic disease causing radiation.

Fukushima is getting worse because it continues to leak radiation 24 hours a day. Huge one wall metal radiation waste storage tanks are being built on site that house screaming hot nuclear liquid waste, but NONE of these hundreds or thousands of metal tanks is earthquake proof, much less freeze proof. 

Hanford in the USA built huge liquid radiation tanks also, and they are now leaking into the groundwater and the Columbia River. This radiation is added to the radiation coming from old abandoned uranium mines.

Spokane And Columbia Rivers Contaminated From Old Abandoned Uranium Mines; via A Green Road

This disaster is not over. The mass media mostly pays no attention to Fukushima, or if it does, it minimizes and spins the disaster into something that sounds minor and completely done with. The government is now asking residents to move back in. It is bringing in children to play in the highly radioactive zone and promoting the province as a ‘tourist’ destination for exchange students. 

Meanwhile, the mass media TV ‘programming’ focuses on dancing stars, trials of murderers, divorces and traffic accidents, as well as other minutia, instead of on issues such as nuclear power, which can easily cause a life extinction event. 

Most people seem to accept the ‘programming’, and cannot believe that anything else is possible, even when confronted with facts and proof.http://www.veteranstoday.com/2011/05/28/fukushima-how-many-chernobyls-is-it/